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Consider the set Pn of complex valued polynomials of m real variables
and of total degree at most n:

Pn :={ :
|k|�n

ckxk : ck # C, x # Rm= .

As usual, for x=(x1 , ..., xm) # Rm and k=(k1 , ..., km) # Zm
+ we set

xk=>m
j=1 xkj

j and |k|=k1+ } } } +km . Given a compact set K/Rm denote
by &p&C(K ) :=supx # K | p(x)| the uniform norm of p on K, and let 'm(K) be
the m-dimensional Lebesque measure of K/Rm.

In this paper we shall consider two basic problems.
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A. The Chebyshev-Type Problem. This consists in estimating the norm
of a polynomial on a set F provided that its norm on another set K is
known, i.e., finding for a given F, K/Rm

sup {&p&C(F )

&p&C(K )

: p # Pn , p�0= .

B. The Remez-Type Problem. This is related to estimating the norm of
a polynomial on a set K/Rm by its norm on a subset of K of ``large''
measure, that is, determining for a given 0<=<1

sup {&p&C(K )

&p&C(F )

: p # Pn , p�0; F/K, 'm(F )�(1&=) 'm(K)= .

The solutions to the above problems are well-known in the univariate
case, when K is a finite interval on the real line. These solutions are based
on the Chebyshev polynomial of first kind defined by Tn(x)=cos n arc
cos x ( |x|�1).

Chebyshev Inequality [1, Sect. 5.1, Eq. 2]. For every p # Pn (m=1) and
x # R"[&1, 1] we have

| p(x)|�Tn( |x| ) &p&C[&1, 1] . (1)

Remez Inequality [8]. For any p # Pn (m=1) satisfying '1[x # [&1, 1]:
| p(x)|�1]�2(1&=) with some 0<=<1 we have

&p&C[&1, 1]�Tn \1+=
1&=+ . (2)

Estimates (1) and (2) are clearly sharp, since they are attained for Tn or
its translates. Thus (1) and (2) provide exact solutions to Problems A and
B above in the case when K is a line segment. (It should be noted that in
[8] inequality (2) is verified for polynomials with real coefficients, but the
complex version is a straightforward consequence of the real estimate.)

The purpose of this paper is to extend the Chebyshev and Remez
inequalities to the multivariate setting. In the first section we shall consider
the multivariate Chebyshev problem. In the second part the Remez
problem for multivariate polynomials will be studied.

MULTIVARIATE CHEBYSHEV INEQUALITY

We shall need some additional notations and definitions. Let K/Rm be
a compact set; a, b # K and c # Rm, c{0 be such that (c, a)�(c, b). (As
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usual, (x, y) denotes the inner product of x, y # Rm.) Then the set of
points

S :=[x # Rm : (c, a) �(c, x) �(c, b)] (a, b # K ) (3)

is called a supporting strip for K if K/S. Thus a supporting strip of K is
the set of points enclosed between two parallel supporting hyperplanes of
K. Denote by S(K) the set of all supporting strips of K. Furthermore, for
a supporting strip S given by (3), its :-extension S:(:>1) is defined by

S: :={x # Rm : �c, a&(:&1)
b&a

2 ��(c, x)

��c, b+(:&1)
b&a

2 �= . (4)

It should be noted that if the distance between boundary hyperplanes of
S is *, then for S: this distance is :*.

This leads to the notion of :-extension of a set K/Rm:

K: :=[&S: : S # S(K)], :>1.

Evidently, K/K: /K; (1<:<;). Using this notion we can introduce a
certain ``distance'' from a set F to K by

*(F, K ) :=inf[: : K: #F]. (5)

Based on this definition we can solve the Chebyshev-type problem in the
case when K/Rm is a convex body, i.e., a compact convex subset of Rm

with nonempty interior.

Theorem 1. Let K/Rm be an arbitrary convex body, and consider a
compact set F/Rm(m�1). Then

sup {&p&C(F )

&p&C(K )

: p # Pn , p�0==Tn(*(F, K )). (6)

Remark. The special case when the underlying set K is strictly convex
and the compact set F consists of a single point (6) was studied by Rivlin
and Shapiro [9]. Our approach, based on the notion of :-extensions intro-
duced above, provides a simple geometric solution in the general case of
arbitrary compact sets F. Another feature of the proof of Theorem 1 is the
fact that it applies to any convex body K. The case when F=Bm, the unit
ball in Rm, was also considered in Brudnyi and Ganzburg [2].
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An essential new element of our approach in comparison with [2] is the
use in Theorem 1 of the ``distance'' * which in turn is based on the notation
of :-extensions. The :-extensions of convex bodies essentially lead to ``level
surfaces'' on which * is constant. It will be shown below that under the
additional assumption that K is symmetric (i.e., 0 # K, and x # K implies
&x # K ) we have K:=:K=[:x : x # K] and

*(x, K )=inf {: :
x
:

# K= .

Hence in the symmetric case *(x, K ) is the Minkowski functional corre-
sponding to K. It should be also noted that, in general, the :-extension
of a nonsymmetric convex body K is not ``shape preserving'' (e.g., for K a
simplex, K: is not a simplex).

In order to prove Theorem 1 we shall need two auxiliary lemmas. The
first lemma provides some information on the geometry of K: .

Lemma 1. Let K/Rm be an arbitrary compact set. Then for any sup-
porting strip S # S(K ) given by (3) we have b+(:&1)(b&a)�2, a&(:&1)
(b&a)�2 # K:(:>1).

Proof. In order to verify Lemma 1 we need to show that a&(:&1)
(b&a)�2 and b+(:&1)(b&a)�2 # S� : , where S� is any supporting strip
of K. Let S� # S(K) be given by

S� :=[x # Rm : (c~ , a~ ) �(c~ , x) �(c~ , b� )]; a~ , b� # K, c~ # Rm; (7)

S� : :={x # Rm : �c~ , a~ &(:&1)
b� &a~

2 ��(c~ , x)

��c~ , b� +(:&1)
b� &a~

2 �= . (8)

Since a, b # K/S� we have by (7)

(c~ , a~ ) �(c~ , a) �(c~ , b� ); (c~ , a~ )�(c~ , b) �(c~ , b� ). (9)

Using (9) we obtain

1&:
2

(c~ , a&a~ ) �0;
1+:

2
(c~ , b&b� ) �0 (:>1).
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Thus applying the last two inequalities yields

�c~ , b+(:&1)
b&a

2 �=
1&:

2
(c~ , a)+

1+:
2

(c~ , b)

�
1&:

2
(c~ , a~ )+

1+:
2

(c~ , b� )

=�c~ , b� +(:&1)
b� &a~

2 �. (10)

Similarly, by (9)

1&:
2

(c~ , a&b� ) �0;
1+:

2
(c~ , b&a~ ) �0 (:>1),

and hence

�c~ , b+(:&1)
b&a

2 �=
1&:

2
(c~ , a)+

1+:
2

(c~ , b)

�
1&:

2
(c~ , b� )+

1+:
2

(c~ , a~ )

=�c~ , a~ &(:&1)
b� &a~

2 �. (11)

Recalling the definition (8) of S� : , and using (10) and (11) we obtain that
b+(:&1)(b&a)�2 # S� : . Similarly it can be shown that a&(:&1)(b&a)�
2 # S� : . K

Assume now that K is a convex body in Rm such that 0 � K, and consider
the analogue of the Minkowski functional

f (x) :=inf {:>0:
x
:

# K= (12)

defined for x # cone(K ) := [ax : x # K; a > 0]. Usually, the Minkowski
functional is defined by (12) when 0 # K but f (x) is a convex functional on
cone(K) when 0 � K, as well. Indeed, if x, y # cone(K ), then x�f (x),
y�f ( y) # K, and hence by the convexity of K for any 0�3�1

3x+(1&3) y
3f (x)+(1&3) f ( y)

=
x

f (x)
}

3f (x)
3f (x)+(1&3) f ( y)

+
y

f ( y)
}

(1&3) f ( y)
3f (x)+(1&3) f ( y)

# K.
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Therefore f (3x+(1&3) y)�3f (x)+(1&3) f ( y), 0�3�1. Moreover,
0< f (x)<� (x # cone (K )), f (x)�1 for x # K (with strict inequality in the
interior of K) and f (tx)=tf (x) (t>0, x # cone (K )).

Let us consider now the problem of minimizing f (x) over x # K. The
properties of f (x) outlined above yield, in particular, that f (x) is a con-
tinuous functional on K, and thus it attains its minimum on K. The next
lemma gives a necessary and sufficient condition for this minimum.

Lemma 2. Let K be a convex body, x0 # K. Then the following state-
ments are equivalent:

(i) f (x)� f (x0) for every x # K;

(ii) there exist parallel supporting hyperplanes for K at x0 and
x0 �f (x0).

Proof. (i) [ (ii). Obviously we have 0< f (x0)<1. Consider the ray l
emanating from the origin and passing through x0 . Evidently, x0 must be
the point of entry of l into K, and x0 � f (x0) is its point of exit from K. Con-
sider the open convex set K1=K0+x0&x0 � f (x0), where K0 :=Int K is the
interior of K. Let us verify that K1 & K0=<. Assume that in contrast there
exist x1 , x2 # K0 such that x1=x2+x0&x0 � f (x0). Then

y := f (x0) x2= f (x0) \x1&x0+
x0

f (x0)+
= f (x0) x1+(1& f (x0)) x0 # K0 . (13)

(We use here the fact that if y # K and z # K0 , then 3y+(1&3) z # K0 for
every 0<3<1.) Furthermore, since x2 # K0 it follows that for some t<1
we must have x2 �t # K, i.e., f (x2)�t<1. This and (13) yield

f ( y)= f (x0) f (x2)< f (x0),

contradicting the minimality of x0 .
Thus K1 & K0=<. Since both K1 and K0 are convex and open it follows

(see [5, p. 130]) that they can be separated. Thus for some nonzero c # Rm

we have

(x, c) �( y, c) , x # K1 , y # K0 .

Since the above relations also hold for the closures of K0 and K1=
K0+x0&x0� f (x0), we obtain that

�x+x0&
x0

f (x0)
, c��( y, c) , x, y # K. (14)
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Set x=x0 � f (x0) # K in (14). Then

(x0 , c) �( y, c) , y # K,

i.e., L1 :=[x # Rm : (x, c) =(x0 , c)] is a supporting plane for K at x0 .
Moreover, setting y=x0 in (14) yields

(x, c) �� x0

f (x0)
, c�, x # K,

i.e., L2 :=[x # Rm : (x, c)=(x0� f (x0), c)] is a supporting plane for K at
x0 �f (x0) # K. Since hyperplanes L1 and L2 are parallel, statement (ii)
follows.

(ii) [ (i). Assume that for some c # Rm we have

(x0 , c)�(x, c) �� x0

f (x0)
, c�, x # K, (15)

i.e., there exist parallel supporting hyperplanes for K at x0 and x0 � f (x0). In
particular, (15) yields that

(x0 , c) \ 1
f (x0)

&1+�0. (16)

Moreover, recalling that f (x)�1 on K, and that the convex body K cannot
be contained in a hyperplane, we obtain that f (x0)<1, i.e.,

(x0 , c) >0. (17)

Consider now an arbitrary x1 # K. Then x1 � f (x1) # K, and we have by (15)
that

1
f (x0)

(x0 , c) �� x1

f (x1)
, c�=

1
f (x1)

(x1 , c)�
1

f (x1)
(x0 , c) .

Using this last inequality and (17) yields f (x1)� f (x0). This completes the
proof of the lemma. K

Corollary 1. Let K/Rm be a convex body (m # N). Then for every
x* # Rm"K there exists a line l passing through x* with K & l=[A, B], such
that K possesses parallel supporting hyperplanes at A and B.

Proof. We may assume that x*=0. Consider the corresponding func-
tional f (x) defined by (12). Let x0 # K be the point where f (x) attains its
minimum. Then by Lemma 2 K possesses parallel supporting hyperplanes
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at A :=x0 and B :=x0 �f (x0) and, evidently, these points belong to a line
passing through the origin. K

Note that for strictly convex bodies K the above corollary can be found
in [9].

Now we can determine the norm of the point-evaluation functional in
the space Pn endowed with the & }&C(K ) -norm.

Theorem 1A. Let K/Rm be a convex body (m # N), and let x* # Rm"K.
Then

sup { | p(x*)|
&p&C(K )

: p # Pn , p�0==Tn(*(x*, K )). (18)

Proof. By Corollary 1 there exists a line l through x* with K & l=
[A, B], so that for some c # Rm

(c, A) �(c, x)�(c, B) , x # K. (19)

Set

: :=
&x*&(A+B)�2&

1
2 &A&B&

; :>1,

where & }& denotes the l2-norm. Let us verify that *(x*, K)=:. Evidently,
x* coincides with one of the points A&(:&1)(B&A)�2 or B+(:&1)
(B&A)�2. Hence by Lemma 1, x* # K: . On the other hand, for arbitrary
:1<: we have x* � S:1

, where S is the supporting strip for K defined by
(19). Thus :=*(x*, K ). Consider now an arbitrary p # Pn with &p&C(K)=1.
Then p~ (t)= p((A+B)�2+t(B&A)�2) is a univariate polynomial (t # R) of
degree at most n, and | p~ (t)|�1 for t # [&1, 1]. Hence by the univariate
Chebyshev inequality (1) (using that x*=(A+B)�2+#:(B&A)�2 with
#=1 or &1)

| p(x*)|=| p~ (#:)|�Tn(:)=Tn(*(x*, K )). (20)

This establishes the upper bound in (18).
Set now

; :=
2

(c, B&A)
(;>0)
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and

pn*(x) :=Tn \; �c, x&
A+B

2 �+ # Pn . (21)

By (19) for every x # K

&
1
;

=�c,
A&B

2 ���c, x&
A+B

2 ���c,
B&A

2 �=
1
;

.

Therefore

}; �c, x&
A+B

2 �}�1, x # K,

i.e., for polynomial (21) we have

| pn*(x)|�1, x # K. (22)

On the other hand, since x*=(A+B)�2+#:(B&A)�2 (#=1 or &1) we
have by (21)

| pn*(x*)|= }Tn \#;: �c,
B&A

2 �+}=Tn(:)=Tn(*(x*, K )).

This equality together with (22) yields the lower bound of Theorem 1A. K

Note that Theorem 1A coincides with Theorem 1 if F=[x*] is a
singleton. Moreover, since we clearly have that

*(F, K )=sup
x # F

*(x, K )

Theorem 1 follows directly from (18).

Remark 1. When the convex body K is, in addition, symmetric, its sup-
porting strips can be described by (3) with a=&b. This fact and Lemma
1 yield that K:=:K and *(x, K ) is the Minkowski functional in the sym-
metric case.

Remark 2. It is easy to see that both Theorems 1 and 1A fail to hold
in general if K is not convex. Indeed, in this case there exists
x~ # conv(K )"K, where conv(K ) is the convex hull of K. On the other hand,
for every :>1 we have K: #conv(K ) because K: is convex and
K: #K(:>1). This means that x~ # K: for any :>1, i.e., *(x~ , K)=1. Thus
if, say, (18) were true for a nonconvex K then it would imply that for every
p # Pn such that | p|�1 on K we must also have | p|�1 on conv(K ). But
this is clearly false, in general.
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MULTIVARIATE REMEZ INEQUALITY

In this section we shall study the multivariate Remez problem. This
problem consists in estimating &p&C(K ) for p # Pn and K/Rm provided that
| p|�1 on some subset F/K satisfying 'm(F )�(1&=) 'm(K ).

Let us introduce the corresponding quantity which provides some means
of investigating the above problem: given a set K/Rm with 'm(K )>0, set

8n, m(K, =)=sup {&p&C(K )

&p&C(F )

: p # Pn , p�0; F/K, 'm(F )�(1&=) 'm(K )=
0<=<1.

One of the results given in [2] states that whenever K is a convex body
in Rm

8n, m(K, =)�Tn \1+=1�m

1&=1�m+ . (23)

The proof of (23) given in [2] is not complete, because Lemma 1 on p. 350
is not verified in full detail (in fact, filling in the missing details there might
be a nontrivial matter). Nevertheless, this problem could be avoided if
instead of Lemma 2 of [2] one uses the full Remez Inequality (this makes
Lemma 1 in [2] superfluous). For the sake of completeness we shall give
below a proposition which is slightly more general than (23) even though
its proof follows by standard arguments. Recall that given, a set K/Rm

and a point x # K, the set K is called star-like with respect to x if for any
line l/Rm passing through x the set l & K is a line segment.

Proposition 1. Let 0<=<1; m, n # N. Assume that K/Rm is a com-
pact set which is star-like with respect to x* # K. Then

sup { | p(x*)|
&p&C(F)

: p # Pn , p�0; F/K, 'm(F )�(1&=) 'm(K )=�Tn \1+=1�m

1&=1�m+ .

Proof. We may assume that x*=0 and K is star-like with respect to the
origin. For x=(x1 , ..., xm) # Rm its spherical coordinates are given by

xj=r sin .j&1 `
m&1

k= j

cos .k

(1� j�m, r�0; 0�.1�2?; |.j |�?�2, 2� j�m&1). (24)

(Here and in what follows we assume that sin .0=1.)
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It is known that the Jacobian of this transformation can be written as

J=rm&18(.2 , ..., .m&1), (25)

where 8 (shown in the proof of Lemma 3 below) is continuous on
T m&1 :=[0, 2?]_[&?�2, ?�2]m&2 and 8>0 in the interior of T m&1 (see
[6, p. 166]). Let now F/K be such that 'm(F )�(1&=) 'm(K ), and denote
by /F the characteristic function of F. Furthermore, for any fixed . # T m&1

let R(.) be the ray emanating from the origin defined by (24). Since K is
star-like with respect to the origin it follows that K & R(.) is a line seg-
ment. For a given . # T m&1 let us denote by r1(.) the maximal value of
r for which x=(x1 , ..., xm) given by its spherical coordinates (24) is in K.
Then K has the following representation in spherical coordinates:

K0 :=[(., r) : . # T m&1; 0�r�r1(.)]. (26)

Moreover, set

r2(.)='1(F & R(.)), . # T m&1. (27)

Then by (25), (26), and the Fubini Theorem

'm(K )=|
K

1 dx=|
K0

rm&18(.) d. dr

=|
T m&1

8(.) \|
r1(.)

0
rm&1 dr+ d.=

1
m |

T m&1
8(.) rm

1 (.) d.; (28)

'm(F )=|
K

/F dx=|
T m&1

8(.) \|
r1(.)

0
/F rm&1 dr+ d.. (29)

Using (27) we obviously have for every . # T m&1

|
r1(.)

0
/Frm&1 dr�|

r1(.)

r1(.)&r2(.)
rm&1 dr=

rm
1 (.)&(r1(.)&r2(.))m

m
. (30)

Recalling that 'm(F )�(1&=) 'm(K) we have by (28)�(30)

(1&=) |
Tm&1

8(.) rm
1 (.) d.�|

T m&1
8(.)(rm

1 (.)&(r1(.)&r2(.))m) d..

This yields that for some .~ # T m&1

(1&=) rm
1 (.~ )�rm

1 (.~ )&(r1(.~ )&r2(.~ ))m,
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i.e.,

r2(.~ )�(1&=1�m) r1(.~ ). (31)

Note that by (24) the restriction of any p # Pn to the ray R(.~ ) is a
univariate polynomial p~ in the variable r of degree at most n. Hence

| p(0)|
&p&C(F )

�
| p~ (0)|

&p~ &C(F & R(.~ ))

where by (27) and (31)

'1(F & R(.~ ))�(1&=1�m) r1(.~ )=(1&=1�m) '1(K & R(.~ )).

Thus applying the univariate Remez inequality (2) transformed to the
interval K & R(.~ ) of length r1(.~ ) (and with =1�m replacing =) yields the
statement of Proposition 1. K

Since a convex body is star-like with respect to any of its points the
upper bound (23) follows immediately from Proposition 1.

Let us consider now the question of sharpness of (23). In [3] it is shown
that equality in (23) holds if and only if K is a conic section. (A conic sec-
tion is a bounded intersection of a convex cone with a half-space in Rm.)
Assuming that 0<=�2&m and using a well-known expression

Tn(x)= 1
2 [(x+- x2&1)n+(x&- x2&1)n], |x|>1,

we obtain from (23) that

log 8n, m(K, =)�6n=1�2m

where K/Rm is a convex body.
It can be easily shown that the above upper bound (with a different con-

stant) remains valid for much more general domains K.
For x # K denote by t(x) the maximal volume of a conic section with

vertex at x which is contained in K. Similar to the proof of Proposition 1,
it can be shown that

log 8n, m(K, =)�cn=1�2m, (32)

provided that inf[t(x) : x # K]>0. This latter condition essentially means
that the boundary of K does not contain cusps (that is, points which are
not vertices of inscribed conic sections).

We shall consider now the following question: Can the upper bound (32)
be improved (asymptotically) for smooth bodies K in Rm? It turns out that
=1�2m in (32) can be replaced by a significantly smaller term =1�(m+1) under
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a very mild smoothness assumption on K. Let us introduce the correspond-
ing property. For K/Rm and x0 # K let rK (x0) be the radius of the largest
ball contained in K such that x0 is on the surface of this ball. Moreover,
set

r(K )= inf
x0 # K

rK (x0).

We shall say that K/Rm is smooth if r(K )>0.
Essentially, this condition requires that K has a C 2-boundary. In par-

ticular, it holds for strictly convex sets. If K/Rm is smooth then estimate
(32) can be replaced by a sharper bound

log 8n, m(K, =)�cn=1�(m+1). (33)

The proof of (33) differs from the method of proof of Proposition 1 in a
rather significant way. Namely, in Proposition 1 we ``linearized'' the
problem by looking at the rays emanating from the given point. In order
to obtain the sharper bound (33) we shall use a different linearization
technique based on circles passing through the given point. This will allow
us to apply a univariate trigonometric version of the Remez inequality
proved by Erde� lyi [4]: if tn is a univariate trigonometric polynomial of
degree at most n, and '1[. # [&?, ?]: |tn(.)|�1]�2?&= (0<=<?�2),
then

max
|.|�?

|tn(.)|�exp[c0n=], (34)

where c0>0 is an absolute constant.

Theorem 2. Let K/Rm be smooth (m�2). Then there exist c1 , c2>0
depending only on K and m such that

log 8n, m(K, =)�c2 n=1�(m+1) (0<=<c1).

Moreover, whenever K/Rm is compact and 'm(K )>0 we have with some
c3>0

log 8n, m(K, =)�c3 n=1�(m+1) (0<=<c1).

The proof of the above statement requires several technical auxiliary
results.
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Lemma 3. Let m�2. For the transformation

xj=t sin .j&1 `
m&1

k= j

cos .k (1� j�m&1)
(35)

xm=t(sin .m&1+1)

where 0�t�r; 0�.1�2?; |.j |�?�2 (2� j�m&1), the Jacobian is given
by

J=tm&1(sin .m&1+1) cosm&2 .m&18� , (36)

where 8� =>m&2
j=2 cos j&1 .j .

Proof. First let us examine the Jacobian Js of the spherical coordinate
transformation

xj=t sin .j&1 `
m&1

k= j

cos .k (1� j�m),

where t, .1 , ..., .m&1 carry the same restrictions as above. Elementary
properties of determinants yield

Js=tm&1 cosm&2 .m&18� Dm

where Dm=det(aij) with ai1=sin .i&1 >n&1
k=i cos .k (1�i�m) and

&sin .i&1 > j&2
k=i cos .k sin .j&1 (1�i< j)

aij={cos .j&1 , j=i
0, j>i;

( j=2, 3, ..., m).

Now expansion of Dm along the bottom row and elementary properties
of determinants reveal the recursion Dm=Dm&1. Evidently, D2=1, and
thus Dm=1 for all m�2. Now J differs from Js only in that the (m, 1)-
entry is sin .m&1+1 rather than sin .m&1. Decomposing J into a sum of
two determinants (where the first of them equals Js), expanding the second
determinant along the first column, and using elementary properties of
determinants, we obtain

J=Js+tm&1 sin .m&1 cosm&2 .m&1 8� Dm&1.

Since Dm= } } } =D2=1 this yields (36). K
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Lemma 4. Let :�0 and B�[&?�2, ?�2] where '1(B)=;<?�2. Then

|
B

cos: x(1+sin x) dx�c0;:+3, (37)

where c0=2&(:+5)?&(:+2).

Proof. We first argue that

|
B

f (x) dx�|
&?�2+;�2

&?�2
f (x) dx,

where f (x) :=cos: x(1+sin x). Let

B1 :=B & _&
?
2

, &
?
2

+
;
2& ; B3 :=B &_?

2
&

;
2

,
?
2& ;

B2 :=B"(B1 _ B3); $ :=
;
2

&'1(B1).

Then

;='1(B1)+'1(B2)+'1(B3)�
;
2

&$+'1(B2)+
;
2

,

and so '1(B2)�$. Examination of f $ reveals that f is increasing on
[&?�2, 0], and it is evident that f (&x)� f (x) for 0�x�?�2. As such,

f ( y)� f \&
?
2

+
;
2+� f (x), x # B2 ; y # _&

?
2

, &
?
2

+
;
2&"B.

Thus

|
B

f (x) dx= :
3

j=1
|

Bj

f (x) dx�|
B1

f (x) dx+ f \&
?
2

+
;
2+ $

�|
&?�2+;�2

&?�2
f (x) dx.

To complete the proof, we use the lower estimate sin x>(2�?) x for
0<x<?�2 and

|
&?�2+;�2

&?�2
f (x) dx�|

&?�2+;�2

&?�2+;�4
f (x) dx

�
;
4

f \&
?
2

+
;
4+�c0;:+3.
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Proof of Theorem 2. Let F/K satisfy 'm(F )�(1&=) 'm(K ) (0<=<1),
and consider a p # Pn such that | p|�1 on F. In order to verify the upper
estimate of Theorem 2 we need to obtain the proper upper bound for
&p&C(K ) . Assume that &p&C(K )=| p(x)|, x # K. Since K is smooth it follows
that there exists a ball Br contained in K of radius r�r(K) so that x is on
the surface of this ball. Furthermore, setting A=Br & (K"F ), we have
'm(A)�'m(K"F )�='m(K ), and | p|�1 on Br"A.

We may assume without loss of generality that x=0 and Br is the ball
with center at (0, 0, ..., r) and radius r(r�r(K )). Consider the mapping
[0, r]_[0, 2?]_[&?�2, ?�2]m&2 � Br given by (35) (x=(x1 , ..., xm) # Br).
Denote by /A the function on Br which equals 1 if x # A, and 0 otherwise.
Then using (36) we have

'm(K ) =�'m(A)=|
Br

/A dx

=|
r

0
|

2?

0
|

?�2

&?�2
} } } |

?�2

&?�2
/Atm&1(sin .m&1+1)

_cosm&2 .m&18� d.m&1 } } } d.1 dt. (38)

For given .m&2 , ..., .1 , t denote

; :=;(.m&2, ..., .1 , t)='1 {.m&1 # _&
?
2

,
?
2& : /A=1= . (39)

Then estimating (37) with :=m&2 yields

'm(K ) =�|
r

0
|

2?

0
|

?�2

&?�2
} } } |

?�2

&?�2
c0;m+1tm&18� d.m&2 } } } d.1 dt.

Since 8� is independent of .1 and is even with respect to .2 , ..., .m&2 (see
(36)) the last estimate easily implies that

'm(K )=�c0 |
r

0
|

?

0
|

?�2

0
} } } |

?�2

0
[;m+1(.m&2 , ..., .1 , t)

+;m+1(&.m&2 , ..., &.2 , .1+?, t)] tm&18� d.m&2 } } } d.1 dt

�c0[;m+1(.~ m&2 , ..., .~ 1 , t~ )

+;m+1(&.~ m&2 , ..., &.~ 2 , .~ 1+?, t~ )]
rm

m
C*,
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where (.~ m&2 , ..., .~ 1 , t~ ) is some point in [0, ?�2]m&3_[0, ?]_[0, r], and
C*>0 is a constant depending only on m (which is a result of integrating
8� over the corresponding domain). Recalling that r�r(K ), we obtain from
the last estimate that

;m+1(.~ m&2, ..., .~ 1 , t~ )+;m+1(&.~ m&2 , ..., &.~ 2 , .~ 1+?, t~ )�c1=, (40)

where c1>0 depends only on K and m.
It is clear that the mapping (35) satisfies the property

xj (.m&1 , &.m&2, ..., &.2 , .1+?, t)

=xj (?&.m&1 , .m&2, ..., .1 , t) (1� j�m).

This and (39) yield that

;(&.~ m&2, ..., &.~ 2 , .~ 1+?, t~ )

='1 {.m&1 # _&
?
2

,
?
2& : /A(.m&1 , &.~ m&2 , ..., &.~ 2 , .~ 1+?, t~ )=1=

='1 {.m&1 # _?
2

,
3?
2 & : /A(.m&1 , .~ m&2 , ..., .~ 2 , .~ 1 , t~ )=1= .

Hence we obtain by (40) that for the given (.~ m&2 , ..., .~ 1 , t~ ) in
[0, ?�2]m&3_[0, ?]_(0, r],

;� :='1[.m&1 # [0, 2?]: /A=1]�2(c1=)1�(m+1)=c2 =1�(m+1). (41)

Consider now the univariate trigonometric polynomial

t(.m&1)= p(x1 , ..., xm), .m&1 # [0, 2?]

where x1 , ..., xm are given by (35) with given (.~ m&2 , ..., .~ 1 , t~ ) #
[0, ?�2]m&3_[0, ?]_[0, r]. Evidently, deg t�n. Furthermore, by (41),

'1[.m&1 # [0, , 2?]: |t(.m&1)|�1]�2?&c2=1�(m+1).

Thus we obtain by (34) that

max
.m&1 # [0, 2?]

|t(.m&1)|�exp[c2n=1�(m+1)], (42)
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if = is sufficiently small. Obviously, for .m&1=3?�2 we have by (35)

} t \3?
2 +}=| p(0)|=&p&C(K ) .

This together with (42) yields the upper bound in Theorem 2.
Let us verify now the lower bound of Theorem 2.
Let B be the smallest ball in Rm containing K. Then K & �B{< (�B is

the boundary of B). We may assume that 0 # K & �B, and B is the ball with
radius r and center x0=(r, 0, ..., 0). Set F1=[(x1 , ..., xm) # B : x1�$2],
where $==1�(m+1); F=K & F1 . It is easy to see that B"F1 is contained in
an m-dimensional rectangular solid with sides h1=$2; h2= } } } =
hm=2 - 2r $. Thus 'm(B"F1)�c0 $m+1=c0=. Therefore

'm(K"F1)�'m(B"F1)�c0=,

and hence

'm(F )='m(K )&'m(K"F1)

�'m(K )&c0 =='m(K)(1&c=), (43)

where c>0 depends only on K.
Consider now the polynomial

pn(x) :=Tn \2x1&2r&$2

2r&$2 + , x=(x1 , ..., xm) # Rm.

Since $2�x1�2r whenever x # F1 it follows that | pn(x)|�1 for x # F/F1 .
On the other hand, 0 # K and

| pn(0)|= }Tn \2r+$2

2r&$2+}� }Tn \1+
$2

r +}�exp(c*n$)

=exp(c*n=1�(m+1)).

This together with (43) yields the lower bound in Theorem 2. K

Summarizing the discussion of the multivariate Remez problem we can
conclude that for domains K without cusps we have log 8n, m(K, =)=
O(n=1�2m), while for smooth domains K a sharper bound log 8n, m(K, =)=
O(n=1�(m+1)) holds. This improvement in the =-term can make a difference
when one applies these estimates in order to prove Nikolski-type
inequalities. (Such applications first appeared in the multivariate setting in
[2].) Nikolski-type inequalities provide estimates from above for uniform
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norms of polynomials via their Lp-norm. Let | be positive 'm a.e. on
K/Rm and set &g&Lp(K )=(�K | | g| p)1�p.

Consider the quantity

;n, m(|, K )=sup {&g&C(K)

&g&Lp(K )

: g # Pn , g�0= .

In order to estimate ;n, m(|, K ) we shall use the function

.(|, $)=inf {|A
| : A/K, 'm(A)�$= .

Assume that for the domain K we have a Remez-type estimate

log 8n, m(K, =)�cn=#

with some 0<#<1. (As we have seen above #=1�2m for domains without
cusps, and #=1�(m+1) for smooth domains.) Denote by $n(|) the unique
solution of the equation

.(|, $)=e&n$#
. (44)

Then it can be shown that

log ;n, m(|, K )�cn$#
n(|). (45)

The proof of this inequality can be obtained similarly to the proof of
Lemma 2 in [7], where the univariate version of (45) is given (based on
the univariate Remez inequality (34).) It is clear that the magnitude of #
can have a direct effect on estimate (45). For instance, if the weight | is
such that .(|, $)te&1�$, then $n(|)tn&1�(1+#), and in view of (44) we
obtain

log ;n, m(|, K )�cn1�(1+#). (46)

Hence, in particular, when #=1�2m (domains without cusps) the corre-
sponding estimate in (46) is n2m�(1+2m), while for #=1�(m+1) (smooth
domains) we get n(m+1)�(m+2). This observation illustrates the surprising
fact that the magnitude of the quantity ;n, m(|, K ) appearing in the
Nikolski-type inequalities in the multivariate case may depend on the
smoothness of the boundary of the underlying domain.
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